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Abstract
We study the number statistics of ultracold bosons in an optical lattice by performing quantum
Monte Carlo simulations for a 1D Bose–Hubbard model with an external harmonic trap. We
calculate the density profile of the system and observe the formation of a Mott plateau as the
total number of atoms increases. We also calculate the average probability Pα for a particle to
occupy the Fock state |α〉 (α = 1, 2, 3, and 4), and confirm that the evolution of P2 is a
signature of the formation of a Mott insulator plateau in an ultracold atomic system. Our
numerical result agrees qualitatively with the experiment and the mean field calculation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ultracold atoms in optical lattices have opened new windows
to investigating the strongly correlated systems with highly
tunable parameters [1]. The basic physics of these ultracold
atoms is captured by the Bose Hubbard model, whose most
fundamental feature is the existence of a superfluid to Mott
insulator phase transition at zero temperature [2, 3]. In
a very shallow optical lattice, the ultracold bosons are in
superfluid phase and can be well described by a macroscopic
wavefunction with long-range phase coherence [4]. In this
case, the phase fluctuation is zero and the on-site number
fluctuation is large. When the optical lattice is very deep,
the bosons enter the Mott insulating phase with fixed number
of atoms per site and without phase coherence, i.e., the on-
site number fluctuation is zero and the phase fluctuation is
large [4, 5]. The physics of the MI phase is such that, when
the repulsive interaction between the atoms is large enough,
the number fluctuation becomes energetically unfavorable and
the system enters a number-squeezed state. This interaction
induced MI phase plays an important role in strongly correlated
systems, as well as in various quantum information processing
schemes [6].

In the past, some ultracold atom experiments have been
performed to detect the number-squeezed MI phase through
the observation of increased phase fluctuations [4, 5, 7]
or through an increased timescale for phase diffusion [8].
Recently, the continuous suppression of on-site number

fluctuations was directly observed by Gerbier et al by
monitoring the suppression of spin-changing collisions across
the superfluid/Mott insulator transition [9]. By using a far
off-resonant microwave field, the spin oscillations for doubly
occupied sites can be tuned into resonance and the amplitude
of the spin oscillation is directly related to the probability of
finding atom pairs per lattice site. It was shown by Gerbier
et al that, for small atom number, the oscillation amplitude
is increasingly suppressed with increasing lattice depths and
completely vanishes for large lattice depths. In the MI region,
this suppression persists up to some threshold number of
atoms. The authors also compared their experimental results
with the prediction of the Bose Hubbard model within a mean
field approximation at zero temperature. In a recent paper [10],
two of us extended mean field theory to include temperature
and find a better fitting between the experimental data and the
finite-temperature curves.

In this paper, we step out of the mean field theory area
and perform quantum Monte Carlo (QMC) simulations for
the 1D Bose–Hubbard model with an external harmonic trap.
In the past, many authors have used quantum Monte Carlo
simulations to study the Bose–Hubbard model [11]. However,
the number statistics of the Bose–Hubbard model has not
been studied in detail yet; this will be the major topic of this
paper. A qualitative comparison of our numerical results with
the experimental data and the mean field calculation will be
performed.
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This paper is organized as follows. In section 2, we will
briefly introduce the Bose–Hubbard model, which can be used
to describe ultracold bosons in an optical lattice. In section 3,
we will perform quantum Monte Carlo simulations for the
1D Bose–Hubbard model with an external harmonic trap. In
section 4, we will give our conclusions.

2. Ultracold bosons in an optical lattice: the
Bose–Hubbard model

We consider an ultracold atomic gas trapped in a three-
dimensional optical lattice potential, V0(r) = V0

∑3
j=1

sin2(kr j ), with k = 2π/λ being wavevectors and λ the laser
wavelength. In real experiments, an additional harmonic trap
Vi is superimposed on the lattice potential. If the optical lattice
is deep enough, the above system can be well described by the
following inhomogeneous Bose–Hubbard Hamiltonian [3]:

H = −t
∑

〈i j〉
a†

i a j +
∑

i

(Vi − μ)ni + U

2

∑

i

ni (ni − 1). (1)

Here a†
i is the creation operator at site i , ni = a†

i ai is the
particle number operator, and 〈i j〉 denotes the sum over nearest
neighbor sites. t and U are the hopping amplitude and on-site
interaction, respectively:

t =
∫

dr w∗(r − ri )

(

− h̄2

2m
∇2 + V0(r)

)

w(r − r j ),

U = 4πash̄
2

m

∫

dr|w(r)|4,
(2)

where as is the s-wave scattering length and w(r) is the
Wannier function. For a given optical lattice potential, t and
U can be evaluated numerically [3].

3. Numerical results: quantum Monte Carlo
simulations in one dimension

Although mean field theory is applicable in three dimensions,
its application in 1D is questionable due to the large
quantum fluctuations. In this section, we will come to
the numerical calculation and focus our study on the Bose–
Hubbard model (1) in a harmonic trapped potential. The
trapped potential that we use is

Vi = Vti(i − L/2)2 (3)

where L is the chain length and Vt = 0.02t . The method that
we use is quantum Monte Carlo (QMC) simulation using the
stochastic series expansion (SSE) technique [12, 13]. In the
simulations, the lattice is set large enough to allow neglect of
the boundary effects and the inverse of temperature is chosen
to be β = 100t which is low enough to reach the ground state
properties.

The density profile of the 1D Bose–Hubbard model in a
harmonic trapped potential is shown in figure 1 with various
chemical potentials. We can see that there is one n = 1 Mott
plateau in the middle region of the trapped potential when the

Figure 1. The particle density ni at each lattice site i of a 1D
inhomogeneous Bose–Hubbard model for various chemical
potentials μ. The chain length is L = 100, the parameter of the
trapped potential is Vt = 0.02t , and the interaction is U = 10t .

chemical potential μ is small (e.g. the curve with μ = 4t).
On both sides of the Mott plateau there are superfluid regions.
As we increase the chemical potential, the total number of
particles is increasing. Then a new superfluid region with
density larger than 1 emerges (e.g. the curve with μ = 8t).
This superfluid region splits the Mott plateau into two parts
and pushes them to the edges of the trapped potential. If
the chemical potential is increased further, the n = 2 Mott
plateaus will come out in the middle region of the trapped
potential (see the curves with μ > 14). In the density profile,
the Mott plateaus and superfluid regions appear alternately to
form a so-called ‘wedding-cake’ structure. Our calculations
are consistent with the previous QMC work [11].

The local particle density ni plotted in figure 1 can be
decomposed into

ni =
∞∑

α=1

nαi , (4)

where nαi is the density of particles occupying the Fock state
|α〉 at lattice site i . In order to study the number statistics of
the bosonic gas in a harmonic trap, we plot nαi (α = 1, 2, 3,
and 4) in figure 2 for various chemical potentials. When the
chemical potential is small, the average particle density of the
system is small. Most particles are in |α = 1〉 state and the
probability for the particle to occupy the |α > 1〉 state is very
small (see the curves with μ = 6t). In this case, n1i forms
a plateau in the center of the trap, which corresponds to the
n = 1 Mott plateau in figure 1. On increasing the chemical
potential, a new superfluid region with average density n > 1
develops in the middle of the n = 1 Mott plateau as shown in
figure 1. In this superfluid region, n1i decreases, but n2i and
n3i increase. Although n1i drops in the center, there are still
two shoulders on either side corresponding to the two small
n = 1 Mott plateaus (see, e.g., the curve with μ = 10t). The
whole n1i curve forms a ‘U’ shape. As the chemical potential
increases further, the two legs of the ‘U’ shape are pushed to
the edges of the trap. The evolution of the n2i curve as the
chemical potential increases is qualitatively the same as that
of the n1i curve. n2i initially develops a peak as the chemical
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Figure 2. The density nαi of atoms occupying the Fock state |α〉
(α = 1, 2, 3, and 4) at each lattice site i for various chemical
potentials μ. The chain length is L = 100, the parameter of the
trapped potential is Vt = 0.02t , and the interaction is U = 10t .

potential increases, then forms a plateau corresponding to the
formation of the n = 2 Mott plateau. After that, n2i drops in
the center of the trap and forms a ‘U’ shape curve (see the sub-
figure (b) in figure 2). The same thing happens to the n3i and
n4i curves if the chemical potential is large enough.

In the number fluctuation experiment by Gerbier et al [9],
the total number of atoms in the doubly occupied state (that
is, the |2〉 state) is measured by the so-called spin-changing
collisions method. After determining the total number for the
system, it is easy to obtain the average probability of finding
an atom in the doubly occupied state. In the following, we
will calculate the average probability of double occupation
of a 1D inhomogeneous system using SSE quantum Monte

Figure 3. The probability Pα (α = 1, 2, 3, and 4) as a function of
average particle density ρ for various interactions U/t . Pα is the
average probability for a particle to occupy the |α〉 state over the
whole lattice. The chain length is L = 100, and the parameter of
trapped potential is Vt = 0.02t .

Carlo simulations. For the fixed interaction U/t and chemical
potential μ, we can calculate the density nαi of atoms
occupying the |α〉 state at each lattice site i , as shown in
figure 2 for a special case of U = 10t . We define the average
probability Pα as

Pα = Nα/N =
∑

i

nαi/N, (5)

where N is the total number of the 1D system and Nα is the
total number of atoms occupying the |α〉 state.

In figure 3, the probability Pα (α = 1, 2, 3, and 4) is
plotted as a function of average particle density ρ = N/L for
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various interaction U/t values. We can see from the figure that,
as the average particle density ρ increases, P1 monotonically
decreases, and P3 and P4 monotonically increase. However,
P2 does not change monotonically with the increasing of ρ.
We first focus on the region with small average particle density
ρ. When the interaction U/t is small, both P1 and P2 are
large, P3 is small, and P4 is very small. That is, the number
of fluctuations of the system is large and therefore the system
is in a superfluid state. When we increase the interaction, P1

increases to 1, but P2, P3, and P4 drop to zero, which means
that almost all the atoms are in the |α = 1〉 state. In this case,
the n = 1 Mott plateau forms in the center of the system
(see figure 1). Therefore, the observation of P2 decreasing
to zero with increase in the interaction in the small ρ region
can provide evidence of the system entering the Mott insulator
state. This suppression of P2 with increase in interaction has
been observed in an experiment of Geiber et al [9].

In the following, we particularly focus on the average
probability of double occupation P2 in the sub-figure (b) of
figure 3. When the interaction is large (e.g. for the curve with
U/t = 20), P2 is very small in the small average density ρ

region. At a typical value of density ρc1, P2 suddenly increases
and P1 decreases sharply. This is due to the appearance of a
superfluid region in the middle of the n = 1 Mott plateau (see
figure 1). At the same time, ni1 in figure 2(a) begins to drop
in the center of the trap. As ρ increases further, P2 reaches its
maximum at ρc2 and then decreases with increase of ρ. The
maximum of P2 corresponds to the formation of the widest
n = 2 Mott plateau in the middle of the trap. The following
decrease of P2 is due to the formation of a superfluid region
in the middle of the n = 2 Mott plateau (see figure 1). The
evolution of P2 can also be understood from figure 2(b). When
the interaction U/t decreases, both ρc1 and ρc2 move to small
values. Note that the sudden decrease of P2 corresponds to an
increase of P3.

Comparing with the number statistics experiment and the
mean field theory, we can see that the behavior of P2 in
figure 3(b) agrees well qualitatively with the experimental
measurement and mean field calculation (see figure 4 of [9]
and figure 7 of [10]), although our simulation is based on a
1D system. Figure 3(b) has the same important feature as
the experiment: that P2 in the small ρ region is suppressed
to zero with increase of the interaction, which is regarded as
a signature of the formation of a Mott insulator. When the
interaction is large, P2 in figure 3(b) increases and decreases
sharply at the typical values ρc1 and ρc2, respectively. These
two typical values of density have been observed in the
number statistics experiment [9] as well as in the mean field
calculations [9, 10]. In all, our QMC simulations for the 1D
system have reproduced all the main features of the experiment
and the mean field theory.

4. Conclusion

We have studied the number fluctuation of ultracold bosons in
optical lattices using quantum Monte Carlo simulations. The
ultracold bosonic gas in an optical lattice can be described
using the Bose–Hubbard model, and therefore we performed

QMC simulations for the one-dimensional Bose–Hubbard
model with an external harmonic trap. We obtained the
density profile of the system for various chemical potentials,
and showed the formation of n = 1 and 2 Mott plateaus
with increase in the total number of atoms. In order to
investigate the number fluctuation, we calculated the average
probability Pα for a particle to occupy the Fock state |α〉
(α = 1, 2, 3, and 4). We found that the evolution of P2 is
a signature of the formation of a Mott insulator plateau in the
ultracold atomic system. Our numerical result for P2 agrees
qualitatively with the recent experimental data [9] and a mean
field calculation [9, 10].
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